2015
DOI: 10.1371/journal.pcbi.1004028
|View full text |Cite|
|
Sign up to set email alerts
|

Inference of Quantitative Models of Bacterial Promoters from Time-Series Reporter Gene Data

Abstract: The inference of regulatory interactions and quantitative models of gene regulation from time-series transcriptomics data has been extensively studied and applied to a range of problems in drug discovery, cancer research, and biotechnology. The application of existing methods is commonly based on implicit assumptions on the biological processes under study. First, the measurements of mRNA abundance obtained in transcriptomics experiments are taken to be representative of protein concentrations. Second, the obs… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
32
0

Year Published

2015
2015
2022
2022

Publication Types

Select...
4
3
1
1

Relationship

2
7

Authors

Journals

citations
Cited by 26 publications
(32 citation statements)
references
References 62 publications
(111 reference statements)
0
32
0
Order By: Relevance
“…(6) Low-affinity DNA binding sites, unstable protein complexes, and DNA supercoiling can play crucial roles in regulating transcription. Investigating transcriptional dynamics necessitates both live imaging methods with high resolution (Skupsky et al, 2010;Suter et al, 2011;Evans et al, 2012;Friedman, Mumm, & Gelles, 2013;Gebhardt et al, 2013;Hocine et al, 2013;Kouno et al, 2013;Lickwar, Mueller, & Lieb, 2013;Yunger et al, 2013;Sidaway-Lee et al, 2014;Annibale & Gratton, 2015;Camunas-Soler et al, 2015;Gocheva et al, 2015;Roberts et al, 2015;Rybakova et al, 2015a;Corrigan et al, 2016;Tantale et al, 2016) and quantitative computer simulations with appropriate theories and models (Skupsky et al, 2010;Suter et al, 2011;Wang et al, 2012;Maina et al, 2014;Choubey, Kondev, & Sanchez, 2015;Stefan et al, 2015;Rybakova et al, 2015a,b;Corrigan et al, 2016;Tantale et al, 2016). Specifically, integrating diverse sets of data makes it possible to present a coherent dynamic picture of gene transcription in bacteria ).…”
Section: Discussionmentioning
confidence: 99%
“…(6) Low-affinity DNA binding sites, unstable protein complexes, and DNA supercoiling can play crucial roles in regulating transcription. Investigating transcriptional dynamics necessitates both live imaging methods with high resolution (Skupsky et al, 2010;Suter et al, 2011;Evans et al, 2012;Friedman, Mumm, & Gelles, 2013;Gebhardt et al, 2013;Hocine et al, 2013;Kouno et al, 2013;Lickwar, Mueller, & Lieb, 2013;Yunger et al, 2013;Sidaway-Lee et al, 2014;Annibale & Gratton, 2015;Camunas-Soler et al, 2015;Gocheva et al, 2015;Roberts et al, 2015;Rybakova et al, 2015a;Corrigan et al, 2016;Tantale et al, 2016) and quantitative computer simulations with appropriate theories and models (Skupsky et al, 2010;Suter et al, 2011;Wang et al, 2012;Maina et al, 2014;Choubey, Kondev, & Sanchez, 2015;Stefan et al, 2015;Rybakova et al, 2015a,b;Corrigan et al, 2016;Tantale et al, 2016). Specifically, integrating diverse sets of data makes it possible to present a coherent dynamic picture of gene transcription in bacteria ).…”
Section: Discussionmentioning
confidence: 99%
“…The optimization procedure made use of the fminsearchbnd function of Matlab available at mathworks.com/matlabcentral/fileexchange. We evaluated the results by performing an a-posteriori identifiability analysis using a procedure analogous to bootstrapping as described before [72], resulting in confidence intervals for the parameter estimates (S1 Fig).…”
Section: Parameter Estimation and Identifiability Analysismentioning
confidence: 99%
“…An estimate of the average gene activation over the population of cells may thus be obtained by regularized inversion of the reporter synthesis dynamics [21]. Provided accurate knowledge of the latter, reconstruction of the promoter activity allows one to investigate gene expression regulatory mechanisms, a crucial step toward inference of gene regulatory networks [18].…”
Section: Introductionmentioning
confidence: 99%