2020
DOI: 10.1145/3412816.3412819
|View full text |Cite
|
Sign up to set email alerts
|

Inferring attributes with picture metadata embeddings

Abstract: Users in online social networks are vulnerable to attribute inference attacks due to some published data. Thus, the picture owner's gender has a strong influence on individuals' emotional reactions to the photo. In this work, we present a graph-embedding approach for gender inference attacks based on pictures meta-data such as (i) alt-texts generated by Facebook to describe the content of images, and (ii) Emojis/Emoticons posted by friends, friends of friends or regular users as a reaction to the picture. Spec… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2024
2024

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 27 publications
0
0
0
Order By: Relevance