Inferring Metabolic States from Single Cell Transcriptomic Data via Geometric Deep Learning
Holly Steach,
Siddharth Viswanath,
Yixuan He
et al.
Abstract:The ability to measure gene expression at single-cell resolution has elevated our understanding of how biological features emerge from complex and interdependent networks at molecular, cellular, and tissue scales. As technologies have evolved that complement scRNAseq measurements with things like single-cell proteomic, epigenomic, and genomic information, it becomes increasingly apparent how much biology exists as a product of multimodal regulation. Biological processes such as transcription, translation, and … Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.