1971
DOI: 10.2136/sssaj1971.03615995003500050018x
|View full text |Cite
|
Sign up to set email alerts
|

Infiltration from a Trickle Source: I. Mathematical Models

Abstract: Theoretical considerations and mathematical tools to analyze multidimensional transient infiltration from a trickle source have been developed. Two mathematical models were considered: (i) a plane flow model involving the Cartesian coordinates x and z; and (ii) a cylindrical flow model described by the cylindrical coordinates r and z. The diffusion‐ type water flow equation in unsaturated soil was solved numerically by an approach that combines the noniterative ADI difference procedure with Newton's iterative … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
48
0
22

Year Published

1982
1982
2013
2013

Publication Types

Select...
6
3

Relationship

0
9

Authors

Journals

citations
Cited by 138 publications
(70 citation statements)
references
References 0 publications
0
48
0
22
Order By: Relevance
“…Among these issues, we can list the presence of steep wetting fronts; the elliptic form of Richards' equation in saturated domains; the non-mass-conserving of algorithms solving for ; and the fact that -based algorithms cannot be applied to situations where parts of the domain are saturated [Milly, 1985[Milly, , 1988Hills et al, 1989;Kirkland et al, 1992]. Different finite difference algorithms were developed that deal with these issues [Klute, 1952;Hanks and Bowers, 1962;Rubin, 1968;Brandt et al, 1971;Neuman, 1972;Vauclin et al, 1979]. Mass conservation was significantly improved by Celia et al [1990].…”
Section: Numerical Solutions Of the Infiltration Equationmentioning
confidence: 99%
“…Among these issues, we can list the presence of steep wetting fronts; the elliptic form of Richards' equation in saturated domains; the non-mass-conserving of algorithms solving for ; and the fact that -based algorithms cannot be applied to situations where parts of the domain are saturated [Milly, 1985[Milly, , 1988Hills et al, 1989;Kirkland et al, 1992]. Different finite difference algorithms were developed that deal with these issues [Klute, 1952;Hanks and Bowers, 1962;Rubin, 1968;Brandt et al, 1971;Neuman, 1972;Vauclin et al, 1979]. Mass conservation was significantly improved by Celia et al [1990].…”
Section: Numerical Solutions Of the Infiltration Equationmentioning
confidence: 99%
“…Brandt, et al (1971) e Bresler et al (1971 desenvolveram soluções matemáticas para analisar o movimento multidimensional transitório a partir de uma fonte pontual. Os primeiros autores basearam-se em num modelo de fluxo em 2 dimensões envolvendo as coordenadas cartesianas x e z. Já Bresler et al (1971) basearam-se num modelo de fluxo vertical e radial descrito pelas coordenadas cilíndricas z e r, sendo que somente para o caso onde a taxa de infiltração foi grande é que foram encontradas significativas discrepâncias entre os dados teóricos e os medidos no laboratório. Tanto a teoria, assim como os dados experimentais, indicam que para as condições estudadas, um incremento na taxa de descarga resulta num incremento do molhamento horizontal em detrimento do molhamento vertical.…”
Section: Fluxo E Distribuição De áGua Sob Irrigação Por Gotejamentounclassified
“…Modelos de infiltração e redistribuição para fontes pontiformes foram apresentados por Brandt et al (1971), Warrick (1974), Ben-Asher et al (1978) e Warrick (1986, entre outros. Mmolawa (2000b) relatou que a dinâmica de água e solutos no solo, em ausência de culturas, pode ser representada adequadamente por soluções analíticas do fluxo transitório a partir de fontes puntiformes.…”
Section: Introductionunclassified
“…Numerical methods also have been developed to simulate this phenomenon (Brandt et al, 1971;Taghavi et al, 1984;Healy, 1987). For instance, HYDRUS 2D is a model based on finite-element numerical solutions of the flow equations (Simunek et al, 2006) allowing simulations of threedimensional axially symmetric water flow, solute transport and root water and nutrient uptake.…”
Section: Introductionmentioning
confidence: 99%