The Helmholtz equation for exterior acoustic problems can be solved by the finite element method in combination with conjugated infinite elements. Both provide frequency-independent system matrices, forming a discrete, linear system of equations. The homogenous system can be understood as a quadratic eigenvalue problem of normal modes (NMs). Knowledge about the only relevant NMs, which — when doing modal superposition — still provide a sufficiently accurate solution for the sound pressure and sound power in comparison to the full set of modes, leads to reduced computational effort. Properties of NMs and criteria of modal reduction are discussed in this work.