2007
DOI: 10.7151/dmgt.1362
|View full text |Cite
|
Sign up to set email alerts
|

Infinite families of tight regular tournaments

Abstract: In this paper, we construct infinite families of tight regular tournaments. In particular, we prove that two classes of regular tournaments, tame molds and ample tournaments are tight. We exhibit an infinite family of 3-dichromatic tight tournaments. With this family we positively answer to one case of a conjecture posed by V. Neumann-Lara. Finally, we show that any tournament with a tight mold is also tight.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
2
0
8

Year Published

2012
2012
2024
2024

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 8 publications
(10 citation statements)
references
References 9 publications
0
2
0
8
Order By: Relevance
“…The acyclic disconnection of a digraph has mainly been studied in different classes of digraphs: circulant tournaments [10,11,13], bipartite tournaments [9] and other special tournaments [12]. The relation between the acyclic disconnection and the dichromatic number was studied for circulant tournaments in [13].…”
Section: Introductionmentioning
confidence: 99%
“…The acyclic disconnection of a digraph has mainly been studied in different classes of digraphs: circulant tournaments [10,11,13], bipartite tournaments [9] and other special tournaments [12]. The relation between the acyclic disconnection and the dichromatic number was studied for circulant tournaments in [13].…”
Section: Introductionmentioning
confidence: 99%
“…De esta Conjetura se sabe que la suficiencia es cierta, pero la necesidad no ha podido ser demostrada o refutada. Esta misma conjetura ha sido reforzada fuertemente con los resultados parciales obtenidos en [LlO07], [NLO], [GSNL00] y [LlNL07] de clases especiales de torneos que son tensos.…”
Section: Tensión En 3-gráficasunclassified
“…Observación 2.4. El Teorema anterior es un caso particular del expuesto en [LlO07] donde se demuestra la tensión en tipos especiales de torneos regulares y se exponen conceptos como moldes mansos (véase [NLO]) y torneos amplios. (1)…”
Section: Definición 23 ([Nlo]unclassified
See 1 more Smart Citation
“…La creencia de la veracidad de esta conjetura, fue reforzada con los trabajos posteriores de Hortensia Galeana-Sánchez, Bernardo Llano, Mika Olsen y Víctor Neumann-Lara en [NL99], [LlO07], [NLO09], [GSNL00] y [LlNL07], en los que demuestran la tensión de familias infinitas de torneos. Dichos torneos tienen la característica de ser simples y así, losúnicos ejemplos de torneos regulares que se saben que no son tensos, son las composiciones, lo que parece confirmar la conjetura de Neumann-Lara.…”
Section: Introducción VIIunclassified