A method is shown for preventing temporal broadening of ultrafast optical pulses in highly dispersive and fluctuating media for arbitrary signal-pulse profiles. Pulse pairs, consisting of a strong-field control-pulse and a weak-field signal-pulse, co-propagate, whereby the specific profile of the strong-field pulse precisely compensates for the dispersive phase in the weak pulse. A numerical example is presented in an optical system consisting of both resonant and gain dispersive effects. Here, we show signal-pulses that do not temporally broaden across a vast propagation distance, even in the presence of dispersion that fluctuates several orders of magnitude and in sign (for example, within a material resonance) across the pulse’s bandwidth. Another numerical example is presented in normal dispersion telecom fiber, where the length at which an ultrafast pulse does not have significant temporal broadening is extended by at least a factor of 10. Our approach can be used in the design of dispersion-less fiber links and navigating pulses in turbulent dispersive media. Furthermore, we illustrate the potential of using cross-phase modulation to compensate for dispersive effects on a signal-pulse and fill the gap in the current understanding of this nonlinear phenomenon.