In this paper we answer two recent questions from Charlier et al. (2014) and Harju (2013) about self-shuffling words. An infinite word $w$ is called self-shuffling, if $w=\prod_{i=0}^\infty U_iV_i=\prod_{i=0}^\infty U_i=\prod_{i=0}^\infty V_i$ for some finite words $U_i$, $V_i$. Harju recently asked whether square-free self-shuffling words exist. We answer this question affirmatively. Besides that, we build an infinite word such that no word in its shift orbit closure is self-shuffling, answering positively a question of E. Charlier et al.