We study random-field xy spin model at T = 0 numerically on lattices of up to 1000 × 1000 × 1000 spins with the accent on the weak random field. Our numerical method is physically equivalent to slow cooling in which the system is gradually losing the energy and relaxing to an energy minimum. The system shows glass properties, the resulting spin states depending strongly on the initial conditions. Random initial condition for the spins leads to the vortex glass (VG) state with short-range spin-spin correlations defined by the average distance between vortex lines. Collinear and some other vortex-free initial conditions result in the vortex-free ferromagnetic (F) states that have a lower energy. The energy difference between the F and VG states correlates with vorticity of the VG state. Correlation functions in the F states agree with the Larkin-Imry-Ma theory at short distances. Hysteresis curves for weak random field are dominated by topologically stable spin walls raptured by vortex loops. We find no relaxation paths from the F, VG, or any other states to the hypothetical vortex-free state with zero magnetization.