“…After the introduction of the first families of exceptional orthogonal polynomials (EOP) in the context of Sturm-Liouville theory [11,12], the realization of their usefulness in constructing new SI extensions of ES potentials in quantum mechanics [13,14,15], and the rapid developments that followed in this area [16,17,18,19,20,21,22,23,24,25,26,27,28,29,30], it soon appeared that only some of the well-known SI potentials led to rational extensions connected with EOP. In this category, one finds the radial oscillator [13,15,16,17,18,22,23,24], the Scarf I (also called trigonometric Pöschl-Teller or Pöschl-Teller I) [13,15,16,17,22,24], and the generalized Pöschl-Teller (also termed hyperbolic Pöschl-Teller or Pöschl-Teller II) [14,16,17].…”