In this paper, we consider the existence of multiple solutions for the quasilinear Schrödinger equation $$\left\{ {\matrix{ {-\Delta u-\Delta (\vert u \vert ^\alpha )\vert u \vert ^{\alpha -2}u = g(x,u) + \theta h(x,u),\;\;x\in \Omega } \hfill \cr {u = 0,\;\;x\in \partial \Omega ,} \hfill \cr } } \right.$$ where Ω is a bounded smooth domain in ℝN (N ≥ 1), α ≥ 2 and θ is a parameter. Under the assumption that g(x, u) is sublinear near the origin with respect to u, we study the effect of the perturbation term h(x, u), which may break the symmetry of the associated energy functional. With the aid of critical point theory and the truncation method, we show that this system possesses multiple small negative energy solutions.