In this paper, we consider the following elliptic systems with critical Sobolev growth and Hardy potentials:
{falsenonefalsearrayarrayleft−Δu−λ1u|x|2=a1|u|2*−2u+hMathClass-open(xMathClass-close)ηαα+β|u|α−2u|v|β+b1fMathClass-open(xMathClass-close)|u|p−2u,arrayleftx∈RN,arrayleft−Δv−λ2v|x|2=a2|v|2*−2v+hMathClass-open(xMathClass-close)ηβα+β|u|α|v|β−2v+b2gMathClass-open(xMathClass-close)|v|q−2v,arrayleftx∈RN,
where N ≥ 3, η > 0, λ1,λ2 ∈ [0,ΛN), and ΛNMathClass-punc:MathClass-rel=()NMathClass-bin−222 is the best Hardy constant. 2MathClass-bin*MathClass-rel=2NNMathClass-bin−2 is the critical Sobolev exponent. a1, a2, b1, and b2 are positive parameters, and α,β > 1 satisfy 2 < α + β < 2*. h(x) ≢ 0, h(x) ≥ 0, h(x)MathClass-rel∈L1(double-struckRN)MathClass-bin∩LMathClass-rel∞(double-struckRN), 0MathClass-rel≤f(x)MathClass-rel∈LpMathClass-rel′(double-struckRN), and 0MathClass-rel≤g(x)MathClass-rel∈LqMathClass-rel′(double-struckRN) with pMathClass-rel′MathClass-rel=2MathClass-bin*2MathClass-bin*MathClass-bin−pMathClass-punc,qMathClass-rel′MathClass-rel=2MathClass-bin*2MathClass-bin*MathClass-bin−qMathClass-punc,1MathClass-rel