2018
DOI: 10.1155/2018/8186345
|View full text |Cite
|
Sign up to set email alerts
|

Infinitely Many Trees with Maximum Number of Holes Zero, One, and Two

Abstract: An L(2,1)-coloring of a simple connected graph G is an assignment f of nonnegative integers to the vertices of G such that fu-fv⩾2 if d(u,v)=1 and fu-fv⩾1 if d(u,v)=2 for all u,v∈V(G), where d(u,v) denotes the distance between u and v in G. The span of f is the maximum color assigned by f. The span of a graph G, denoted by λ(G), is the minimum of span over all L(2,1)-colorings on G. An L(2,1)-coloring of G with span λ(G) is called a span coloring of G. An L(2,1)-coloring f is said to be irreducible if there ex… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 8 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?