Objective
Endothelial outgrowth cells (EOC) decrease inflammation and improve endothelial repair. Inflammation aggravates kidney injury in renal artery stenosis (RAS), and may account for its persistence upon revascularization. We hypothesized that EOC would decrease inflammatory (M1) macrophages and improve renal recovery in RAS.
Approach and Results
Pigs with 10 weeks of RAS were studied 4 weeks after percutaneous transluminal renal angioplasty (PTRA+stenting) or sham, with or without adjunct intra-renal delivery of autologous EOC (10×10^6), and compared to similarly-treated normal controls (n=7 each). Single-kidney function, microvascular and tissue remodeling, inflammation, oxidative stress, and fibrosis were evaluated. Four weeks after PTRA, EOC engrafted in injected RAS-kidneys. Stenotic-kidney glomerular filtration rate was restored in RAS+EOC, RAS+PTRA, and RAS+PTRA+EOC pigs, while stenotic-kidney blood flow and angiogenesis were improved and fibrosis attenuated only in EOC-treated pigs. Furthermore, EOC increased cell proliferation and decreased the ratio of M1 (inflammatory)/M2 (reparative) macrophages, as well as circulating levels and stenotic-kidney release of inflammatory cytokines. Cultured-EOC released microvesicles in-vitro and induced phenotypic switch (M1-to-M2) in cultured monocytes, which was inhibited by VEGF blockade. Finally, a single intra-renal injection of rhVEGF (0.05 μg/kg) in 7 additional RAS pigs also restored M1/M2 ratio 4 weeks later.
Conclusions
Intra-renal infusion of EOC after PTRA induced a VEGF-mediated attenuation in macrophages inflammatory phenotype, preserved microvascular architecture and function, and decreased inflammation and fibrosis in the stenotic kidney, suggesting a novel mechanism and therapeutic potential for adjunctive EOC delivery in experimental RAS to improve PTRA outcomes.