Implication for health policy/practice/research/medical education: Our letter highlights the role of CNS drug delivery mechanisms on the efficacy of opioid pharmacotherapy. Information presented in this letter emphasizes the importance of translational studies aimed at understanding specific mechanisms involved in CNS opioid delivery, opioid efficacy, and/or drug-opioid interactions.Copyright © 2013, Kashan University of Medical Sciences; License Kowsar Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Dear Editor,We have read with great interest the article by Mogadam and colleagues on utilization of gabapentin and diclofenac for management of post-operative pain in patients undergoing tonsillectomy (1). Perhaps the most intriguing aspect of this study was the observation that pre-operative administration of gabapentin or diclofenac resulted in reduced post-operative utilization of meperidine, an opioid analgesic. Optimal therapeutic efficacy of opioids requires that they cross the bloodbrain barrier (BBB) and attain effective concentrations in the CNS (2). CNS delivery of opioids is determined by putative membrane transporters localized to the BBB endothelium (3, 4). Both pathophysiological factors (i.e., inflammatory signaling in pain) and pharmacological factors (i.e., use of ancillary pain medications) can modulate mechanisms involved in BBB opioid transport, an effect that can cause profound changes in CNS delivery of traditional opioids (i.e., morphine, meperidine). In fact, our research group has demonstrated that painful and/ or inflammatory stimuli in the periphery can significantly change transport mechanisms for opioids at the BBB such as the drug efflux transporter P-glycoprotein (P-gp) (5) and the drug influx transporter organic anion transporting polypeptide 1a4 (6). Of particular note, we have also shown that diclofenac itself can attenuate paininduced changes in BBB transporter activity (6). Our data suggest that a modulation in post-operative meperidine efficacy may, in part, be the result of altered CNS opioid delivery induced by diclofenac. An additional factor to consider is that some ancillary pain medications may act as chemical inhibitors of the same BBB transporters. In the context of the study by Mogadam and colleagues, this effect may involve the critical BBB efflux transporter P-gp. Specifically, gabapentin is a known P-gp inhibitor (7) while in vitro studies have suggested that meperidine is a P-gp transport substrate (8). Although in vivo studies in mdr1a knockout mice showed no difference in meperidine antinociception (9), a direct analysis of P-gp-mediated transport of meperidine in intact laboratory animals has not been undertaken. Furthermore, this study measured analgesic efficacy using only tail-pinch, a technique that may not have been sensitive enough...