Growing concerns about urban runoff pollution and water scarcity caused by urbanization have prompted the application of bioretention facilities to manage urban stormwater. The purpose of this study was to evaluate the performance of proposed bioretention facilities regarding road runoff pollutant removal and the variation characteristics of the media physicochemical properties and microbial diversity in dry-cold regions. Two types of bioretention facilities were designed and then constructed in Tianjin Eco-city, China, on the basis of combined soil filter media screened by a laboratory-scale test with a modified bioretention facility (MBF) containing soil moisture conservation ropes. Redundancy analysis was performed to evaluate the relationships between the variation in media physicochemical properties and microbial communities. An increase in media moisture could promote an increase in the relative abundance of several dominant microbial communities. In the MBF, the relatively low nitrate-nitrogen (NO3-N) (0.75 mg/L) and total nitrogen (TN) (4.71 mg/L) effluent concentrations, as well as better removal efficiencies for TN and NO3-N in challenge tests, were mainly attributed to the greater relative abundance of Proteobacteria (25.2%) that are involved in the microbial nitrogen transformation process. The MBF also had greater media microbial richness (5253 operational taxonomic units) compared to the conventional bioretention facility and in situ saline soils. The results indicate that stormwater runoff treated by both bioretention facilities has potential use for daily greening and road spraying. The proposed design approach for bioretention facilities is applicable to LID practices and sustainable stormwater management in other urban regions.