Night-light remote sensing imaging technologies have increasingly attracted attention with the development and application of focal plane arrays. On-orbit signal-to-noise ratio (SNR) test is an important link to evaluate night-light camera’s radiometric performance and the premise for quantitative application of remote sensing imageries. Under night-light illumination conditions, the illuminance of ground objects is very low and varies dramatically, the spatial uniformity of each pixel’s output cannot be guaranteed, and thus the traditional on-orbit test methods represented by variance method are unsuitable for low-resolution night-light cameras. To solve this problem, we proposed an effective on-orbit SNR test method based on consecutive time-sequence images that including the same objects. We analyzed the radiative transfer process between night-light camera and objects, and established a theoretical SNR model based on analysis of the generation and main sources of signal electrons and noise electrons. Finally, we took Luojia 1-01 satellite, the world’s first professional night-light remote sensing satellite, as reference and calculated the theoretical SNR and actual on-orbit SNR using consecutive images captured by Luojia 1-01 satellite. The actual results show the similar characteristics as theoretical results, and are higher than the theoretical results within the reasonable error tolerance, which fully guarantee the detection ability of night-light camera and verify the validity of this time-sequence-based method.