SUMMARYThe paper deals with numerical investigations of a deterministic and statistical size effect in granular bodies during quasi-static shearing of an infinite layer under plane strain conditions, free dilatancy and constant pressure. For a simulation of the mechanical behaviour of a cohesionless granular material during a monotonous deformation path, a micro-polar hypoplastic constitutive relation was used which takes into account particle rotations, curvatures, non-symmetric stresses, couple stresses and the mean grain diameter as a characteristic length. The proposed model captures the essential mechanical features of granular bodies in a wide range of densities and pressures with a single set of constants. In the paper, a deterministic and statistical size effect is analysed. The deterministic calculations were carried out with an uniform distribution of the initial void ratio for four different heights of the granular layer: 5, 50, 500 and 2000 mm. To investigate the statistical size effect, the Monte Carlo method was applied. The random distribution of the initial void ratio was assumed to be spatially correlated. Truncated Gaussian random fields were generated in a granular layer using an original conditional rejection method. The sufficient number of samples was determined by analysing the convergence of the outcomes. In order to reduce the number of realizations without losing the accuracy of the calculations, stratified and Latin hypercube methods were applied. A parametric analysis of these methods was also presented. Some general conclusions were formulated.