Quantum state preparation through external control is fundamental to established methods in quantum information processing and in studies of dynamics. In this respect, excitons in semiconductor quantum dots are of particular interest since their coupling to light allows them to be driven into a specified state using the coherent interaction with a tuned optical field such as an external laser pulse. We propose a protocol, based on adiabatic rapid passage, for the creation of entangled states in an ensemble of pairwise coupled two-level systems, such as an ensemble of coupled quantum dots. We show by quantitative analysis using realistic parameters for semiconductor quantum dots that this method is feasible where other approaches are unavailable. Furthermore, this scheme can be generically transferred to some other physical systems including circuit QED, nuclear and electron spins in solid-state environments, and photonic coupled cavities.