When studying ferrofluidic flows, as one example of magnetic flow dynamics, in terms of instability, bifurcation, and properties, one quickly finds out the additional challenges magnetic fluids introduce compared to the investigation of "classical", "ordinary" shear flows without any kind of particles. Approximation of ferrofluids as fluids including point-size particles or, more realistic fine size particles, the relaxation times of the magnetic particle, their interaction between each other, i.e., the agglomeration and chain forming effects, and the interaction/response between any external applied field and the internal magnetization are just few examples of challenges to overcome. Further dependence on the considered model system, the direction of the external applied magnetic field (homogeneous or inhomogeneous) is crucial, as it can break the system symmetry and thus generate new solutions. As a result, the classical Navier-Stokes equations become modified to the more complex ferrohydrodynamical equation of motion, incorporating magnetic field and magnetization of the fluid itself, which typically makes numerical simulations expensive and challenging. This chapter provides an overview of the tasks/difficulties from describing and simulating magnetic particles, their interaction, and thus finally resulting modification in rotating flow structures and in particular instabilities and bifurcation behavior.