Purpose A study was conducted to characterize the 'Madhyam culture' (Excel Crop Care Limited.), an aerobic-composting microbial consortium culture, and understand composting dynamics, product quality and use in crop production vis-à-vis vermi-composting (using earthworms). Methods 16S rDNA analysis was used to characterize aerobic-composting culture. Aerobic-composting and vermi-composting technologies were evaluated to decompose sorghum straw and dung biomass (80:20 ratio; primed with 0.5% urea and 4% rock phosphate) to study days to maturity and composting dynamics in terms of changes in temperature and microbial population. Compost quality was tested for macro-, micro-nutrients and C:N ratio, and evaluated for food production in on-farm trials. Results 16S rDNA analysis screened sixteen bacterial isolates-eight related to genus Bacillus, three to each Halobacillus and Staphylococcus, one to each Microbacterium and Streptomyces. The population of bacteria was 4.5 cfu ml −1 at 10 −7dilution. Aerobic-and vermi-composts matured in around 50 and 60 days, respectively. Aerobic-composting throughout recorded relatively higher bacterial population, and higher temperatures during the initial phase. Aerobic-compost tested for high nutrient (1.55% N, 0.93% P, 1.00% K) content and stable C:N ratio (10.3) compared to vermi-compost (1.11% N, 0.43% P, 0.96% K and C:N ratio of 11.7). Field evaluation of both composts showed yield benefit and saving of chemical fertilizers up to 25%. Conclusions Aerobic-composting (using microbial consortium culture), like vermi-composting, proved to be an effective technology with advantage of no requirement to maintain ambient living conditions in lean periods as is required for earthworms in vermi-composting, but needs more energy/labor for biomass turnings.