Systemic fungicide use has increased over the last decades, despite the susceptibility of resistance development and the side effects to human health and the environment. Although herbicides and insecticides are detected more frequently in environmental samples, there are many fungicides that have the ability to enter water bodies due to their physicochemical properties and their increasing use. Key factors affecting fungicide fate in the environment have been discussed, including the non-target effects of fungicides. For instance, fungicides are associated with the steep decline in bumblebee populations. Secondary actions of certain fungicides on plants have also been reported recently. In addition, the use of alternative eco-friendly disease management approaches has been described. Constructed Wetlands (CWs) comprise an environmentally friendly, low cost, and efficient fungicide remediation technique. Fungicide removal within CWs is dependent on plant uptake and metabolism, absorption in porous media and soil, hydrolysis, photodegradation, and biodegradation. Factors related to the efficacy of CWs on the removal of fungicides, such as the type of CW, plant species, and the physicochemical parameters of fungicides, are also discussed in this paper. There are low-environmental-risk fungicides, phytohormones and other compounds, which could improve the removal performance of CW vegetation. In addition, specific parameters such as the multiple modes of action of fungicides, side effects on substrate microbial communities and endophytes, and plant physiological response were also studied. Prospects and challenges for future research are suggested under the prism of reducing the risk related to fungicides and enhancing CW performance.