To cope with harsh working conditions, new corrosion-resistant coated steel wires with higher tensile strength have been developed. This study investigates the corrosion characteristics of a new zinc–aluminum alloy-coated steel wire under stress conditions. The particulate corrosion products generated by the oxidation of the coating in the initial stage of corrosion are converted into layer-structured corrosion products at the early stage of corrosion. Moreover, high-stress conditions have a significant influence on the critical conversion time from the coating corrosion stage to the iron matrix corrosion stage. Thus, the uniform corrosion depth (i.e., the mass loss rate) could be fitted with a continuous power function model rather than the previously used two-stage model owing to an ambiguous moment of conversion under stress conditions. The pitting corrosion depth could be fitted with a lognormal distribution in this study. The probability distributions for the aspect ratios of corrosion pits under different stress conditions tended to be consistent. Finally, the block’s maximum pitting factor followed a Gumbel distribution with a scale parameter that changed linearly with the stress level and a location parameter related to the square of the stress level.