Research on 2D materials is one of the core themes of modern condensed matter physics. Prompted by the experimental isolation of graphene, much attention has been given to the unique optical, electronic, and structural properties of these materials. In the past few years, semiconducting transition metal dichalcogenides (TMDs) have attracted increasing interest due to properties such as direct band gaps and intrinsically broken inversion symmetry. Practical utilization of these properties demands large-area synthesis. While films of graphene have been by now synthesized on the order of square meters, analogous achievements are difficult for TMDs given the complexity of their growth kinetics. This article provides an overview of methods used to synthesize films of mono-and few-layer TMDs, comparing spatial and time scales for the different growth strategies. A special emphasis is placed on the unique applications enabled by such large-scale realization, in fields such as electronics and optics.