Accepted ManuscriptThis is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. hours in soaking solutions containing 10-50 mM octopamine, 0.1-1.0 mg/mL FITC, and 0.5-6 mM spermidine did not affect vitality. Spermidine phosphate salt hexahydrate rather than spermidine or spermidine trihydrochloride increased uptake of FITC by nematodes, and this resulted in more effective gene silencing. Silencing pat-10 and unc-87 genes of P. thornei and P. zeae resulted in paralysis and uncoordinated movements in both species, although to a higher degree in P. thornei.There was also a greater reduction in transcript of both genes in P. thornei indicating that it may be more susceptible to RNAi. For P. thornei treated with dsRNA of pat-10 and unc-87 there was a significant reduction (77-81%) in nematode reproduction on carrot mini discs over a 5 week period. The results show that RLNs are clearly amenable to gene silencing, and that in planta delivery of dsRNA to target genes in root lesion nematodes should confer host resistance.Moreover, for the two genes, dsRNA derived from either nematode species silenced the corresponding gene in both species. This implies cross-species control of nematodes via RNAi is possible.