Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Aerosol optical and microphysical properties determine their radiative capabilities, climatic impacts, and health effects. Satellite remote sensing is a crucial tool for obtaining aerosol parameters on a global scale. However, traditional physical and statistical retrieval methods face bottlenecks in data mining capacity as the volume of satellite observation information increases rapidly. Artificial intelligence methods are increasingly applied to aerosol parameter retrieval, yet most current approaches focus on end-to-end single-parameter retrieval without considering the inherent relationships among multiple aerosol properties. In this study, we propose a sequence-to-sequence aerosol parameter joint retrieval algorithm based on the transformer model S2STM. Unlike conventional end-to-end single-parameter retrieval methods, this algorithm leverages the encoding–decoding capabilities of the transformer model, coupling multi-source data such as polarized satellite, meteorological, model, and surface characteristics, and incorporates a physically coherent consistency loss function. This approach transforms traditional single-parameter numerical regression into a sequence-to-sequence relationship mapping. We applied this algorithm to global observations from the Chinese polarimetric satellite (the Particulate Observing Scanning Polarimeter, POSP) and simultaneously retrieved multiple key aerosol optical and microphysical parameters. Event analyses, including dust and pollution episodes, demonstrate the method’s responsiveness in hotspot regions and events. The retrieval results show good agreement with ground-based observation products. This method is also adaptable to satellite instruments with various configurations (e.g., multi-wavelength, multi-angle, and multi-dimensional polarization) and can further improve its spatiotemporal generalization performance by enhancing the spatial balance of ground station training datasets.
Aerosol optical and microphysical properties determine their radiative capabilities, climatic impacts, and health effects. Satellite remote sensing is a crucial tool for obtaining aerosol parameters on a global scale. However, traditional physical and statistical retrieval methods face bottlenecks in data mining capacity as the volume of satellite observation information increases rapidly. Artificial intelligence methods are increasingly applied to aerosol parameter retrieval, yet most current approaches focus on end-to-end single-parameter retrieval without considering the inherent relationships among multiple aerosol properties. In this study, we propose a sequence-to-sequence aerosol parameter joint retrieval algorithm based on the transformer model S2STM. Unlike conventional end-to-end single-parameter retrieval methods, this algorithm leverages the encoding–decoding capabilities of the transformer model, coupling multi-source data such as polarized satellite, meteorological, model, and surface characteristics, and incorporates a physically coherent consistency loss function. This approach transforms traditional single-parameter numerical regression into a sequence-to-sequence relationship mapping. We applied this algorithm to global observations from the Chinese polarimetric satellite (the Particulate Observing Scanning Polarimeter, POSP) and simultaneously retrieved multiple key aerosol optical and microphysical parameters. Event analyses, including dust and pollution episodes, demonstrate the method’s responsiveness in hotspot regions and events. The retrieval results show good agreement with ground-based observation products. This method is also adaptable to satellite instruments with various configurations (e.g., multi-wavelength, multi-angle, and multi-dimensional polarization) and can further improve its spatiotemporal generalization performance by enhancing the spatial balance of ground station training datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.