Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The promotion of the utilization of waste agricultural and forestry resources (AFRs) as a means of combating environmental pollution represents an advanced and necessary development approach with the potential to achieve sustainable development. In this work, an advanced adsorbent with a functional Mg−Al bimetallic layer was prepared using waste sawdust biomass (WSD) as a raw material. The layer serves as the primary active component for adsorbing total phosphate from both simulated and real wastewater. The hierarchical structure of the Mg−Al bimetallic hydroxide-modified waste sawdust biomass (MA@WSD) has an abundance of nanosheets on its surface, providing ample binding sites and an enhanced specific surface area of 175.99 m 2 /g. Under the optimal conditions, the maximum removal efficiency toward phosphate can reach 99.99%. The adsorption of phosphate by MA@WSD follows the pseudo-second order kinetic (PSOK) model, indicating that chemisorption is the rate-determining step. Moreover, the thermodynamic data demonstrate the spontaneous nature of the adsorption process, indicating the favorable characteristics of the developed material. The adsorption mechanism can be summarized as the collaboration of physical adsorption, electrostatic interaction, and chemical adsorption. The results of the regeneration process indicate that MA@WSD exhibits a retention of 50.3% of its initial adsorption performance following the fifth testing cycle, thereby suggesting its potential for comparable reusability. The MA@WSD performs well in adsorbing total phosphate in real river water, and the removal efficiency of MA@WSD is evidently superior to commercial activated carbon, which is at least 70% higher than that of the commercial activated carbon. Besides, the 5-time average removal efficiency toward total phosphate by MA@WSD is 62.9%, evidently higher than the 29.1% of commercially available activated carbon, indicating its potential as an alternative for treating phosphorus-containing wastewater. The research provides theoretical support for harmless treatment, resource utilization, carbon sequestration, and emission reduction of waste biomass.
The promotion of the utilization of waste agricultural and forestry resources (AFRs) as a means of combating environmental pollution represents an advanced and necessary development approach with the potential to achieve sustainable development. In this work, an advanced adsorbent with a functional Mg−Al bimetallic layer was prepared using waste sawdust biomass (WSD) as a raw material. The layer serves as the primary active component for adsorbing total phosphate from both simulated and real wastewater. The hierarchical structure of the Mg−Al bimetallic hydroxide-modified waste sawdust biomass (MA@WSD) has an abundance of nanosheets on its surface, providing ample binding sites and an enhanced specific surface area of 175.99 m 2 /g. Under the optimal conditions, the maximum removal efficiency toward phosphate can reach 99.99%. The adsorption of phosphate by MA@WSD follows the pseudo-second order kinetic (PSOK) model, indicating that chemisorption is the rate-determining step. Moreover, the thermodynamic data demonstrate the spontaneous nature of the adsorption process, indicating the favorable characteristics of the developed material. The adsorption mechanism can be summarized as the collaboration of physical adsorption, electrostatic interaction, and chemical adsorption. The results of the regeneration process indicate that MA@WSD exhibits a retention of 50.3% of its initial adsorption performance following the fifth testing cycle, thereby suggesting its potential for comparable reusability. The MA@WSD performs well in adsorbing total phosphate in real river water, and the removal efficiency of MA@WSD is evidently superior to commercial activated carbon, which is at least 70% higher than that of the commercial activated carbon. Besides, the 5-time average removal efficiency toward total phosphate by MA@WSD is 62.9%, evidently higher than the 29.1% of commercially available activated carbon, indicating its potential as an alternative for treating phosphorus-containing wastewater. The research provides theoretical support for harmless treatment, resource utilization, carbon sequestration, and emission reduction of waste biomass.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.