This work addresses the use of piassava fibers (PF) as reinforcement for recovered polypropylene (PPr) in the manufacturing of composites. The composites were molded with variable amounts of PF (10, 20 and 30 wt%), with and without maleic anhydride functionalized polypropylene (MAPP) (10 wt%) as compatibilizer. The composites were characterized using mechanical tests (flexural, tensile, impact and hardness), thermal analyses (thermogravimetric analysis and differential scanning calorimetry), along with evaluations of heat deflection temperature, melting flow index, density and morphology. Tensile and flexural strength of composites increased with PF content, but impact strength decreased, since the material became stiffer. The use of MAPP in the formulations yielded superior properties, showing good fiber/matrix interaction. In all, the use of PF as reinforcement in PPr was considered an interesting way of reducing solid waste and to reinforce plastics, being a possible alternative for the substitution of wood in WPC composites.