More than 80 small regulatory RNAs (sRNAs) and 60 proteins of 16 to 50 amino acids (small proteins) are encoded in the Escherichia coli genome. The vast majority of the corresponding genes have no known function. We screened 125 DNA bar-coded mutants to identify novel cell envelope stress and acute acid shock phenotypes associated with deletions of genes coding for sRNAs and small proteins. Nine deletion mutants (ssrA, micA, ybaM, ryeF, yqcG, sroH, ybhT, yobF, and glmY) were sensitive to cell envelope stress and two were resistant (rybB and blr). Deletion mutants of genes coding for four small proteins (yqgB, mgrB, yobF, and yceO) were sensitive to acute acid stress. We confirmed each of these phenotypes in one-on-one competition assays against otherwise-wild-type lacZ mutant cells. A more detailed investigation of the SsrA phenotype suggests that ribosome release is critical for resistance to cell envelope stress. The bar-coded deletion collection we generated can be screened for sensitivity or resistance to virtually any stress condition.Small regulatory RNAs (sRNAs) play critical regulatory roles in all domains of life. Numerous approaches have been taken to discover sRNA-encoding genes in bacteria (reviewed in references 1 and 26), including bioinformatic searches for conservation as well as promoter and Rho-independent terminator sequences in intergenic regions. sRNAs have also been detected directly by sequencing or microarray analysis, often after size selection or coimmunoprecipitation with RNA-binding proteins. Approximately 80 sRNAs have been identified in Escherichia coli. A few sRNAs bind proteins to effect a cellular response, but the vast majority of sRNAs characterized to date act by base pairing with mRNAs (reviewed in reference 52