The strong force is one of the four fundamental interactions, and the theory of it is called Quantum Chromodynamics (QCD). A many-body system of strongly interacting particles (QCD matter) can exist in different phases depending on temperature (T) and baryonic chemical potential (µB). The phases and transitions between them can be visualized as µB−T phase diagram. Extraction of the properties of the QCD matter, such as compressibility, viscosity and various susceptibilities, and its Equation of State (EoS) is an important aspect of the QCD matter study. In the region of near-zero baryonic chemical potential and low temperatures the QCD matter degrees of freedom are hadrons, in which quarks and gluons are confined, while at higher temperatures partonic (quarks and gluons) degrees of freedom dominate. This partonic (deconfined) state is called quark-gluon plasma (QGP) and is intensively studied at CERN and BNL. According to lattice QCD calculations at µB=0 the transition to QGP is smooth (cross-over) and takes place at T≈156 MeV. The region of the QCD phase diagram, where matter is compressed to densities of a few times normal nuclear density (µB of several hundreds MeV), is not accessible for the current lattice QCD calculations, and is a subject of intensive research. Some phenomenological models predict a first order phase transition between hadronic and partonic phases in the region of T≲100 MeV and µB≳500 MeV. Search for signs of a possible phase transition and a critical point or clarifying whether the smooth cross-over is continuing in this region are the main goals of the near future explorations of the QCD phase diagram. In the laboratory a scan of the QCD phase diagram can be performed via heavy-ion collisions. The region of the QCD phase diagram at T≳150 MeV and µB≈0 is accessible in collisions at LHC energies (√sNN of several TeV), while the region of T≲100 MeV and µB≳500 MeV can be studied with collisions at √sNN of a few GeV. The QCD matter created in the overlap region of colliding nuclei (fireball) is rapidly expanding during the collision evolution. In the fireball there are strong temperature and pressure gradients, extreme electromagnetic fields and an exchange of angular momentum and spin between the system constituents. These effects result in various collective phenomena. Pressure gradients and the scattering of particles, together with the initial spatial anisotropy of the density distribution in the fireball, form an anisotropic flow - a momentum (azimuthal) anisotropy in the emission of produced particles. The correlation of particle spin with the angular momentum of colliding nuclei leads to a global polarization of particles. A strong initial magnetic field in the fireball results in a charge dependence and particle-antiparticle difference of flow and polarization. Anisotropic flow is quantified by the coefficients vₙ from a Fourier decomposition of the azimuthal angle distribution of emitted particles relative to the reaction plane spanned by beam axis and impact parameter direction. The first harmonic coefficient v₁ quantifies the directed flow - preferential particle emission either along or opposite to the impact parameter direction. The v₁ is driven by pressure gradients in the fireball and thus probes the compressibility of the QCD matter. The change of the sign of v₁ at √sNN of several GeV is attributed to a softening of the EoS during the expansion, and thus can be an evidence of the first order phase transition. The global polarization coefficient PH is an average value of the hyperon’s spin projection on the direction of the angular momentum of the colliding system. It probes the dynamics of the QCD matter, such as vorticity, and can shed light on the mechanism of orbital momentum transfer into the spin of produced particles. In collisions at √sNN of several GeV, which probe the region of the QCD phase diagram at T≲100 MeV and µB≳500 MeV, hadron production is dominated by u and d quarks. Hadrons with strange quarks are produced near the threshold, what makes their yields and dynamics sensitive to the density of the fireball. Thus measurement of flow and polarization, in particular of (multi-)strange particles, provides experimental constraints on the EoS, that allows to extract transport coefficients of the QCD matter from comparison of data with theoretical model calculations of heavy-ion collisions.