The effectiveness of imploding waves at detonation initiation of stoichiometric ethylene-and propane-oxygennitrogen mixtures in a tube was investigated. Implosions were driven by twice-shocked gas located at the end of a shock tube, and wave strength was varied to determine the critical conditions necessary for initiation as a function of diluent concentration for each fuel. Hydrocarbon-air mixtures were not detonated due to facility limitations, however, detonations were achieved with nitrogen dilutions as large as 60 and 40% in ethylene and propane mixtures, respectively. The critical-energy input required for detonation of each dilution was then estimated using the unsteady energy equation. Blast-wave initiation theory was reviewed and the effect of tube wall proximity to the blast-wave source was considered. Estimated critical energies were found to scale better with the planar initiation energy than the spherical initiation energy, suggesting that detonation initiation was influenced by wave reflection from the tube walls.