During the actual wind power generation process, wind turbines are often affected by side effects such as blade vibrations, input constraints, and actuator faults. This can lead to a reduction in power generation efficiency and even result in unforeseen losses. This study discusses a robust adaptive fault-tolerant boundary control approach to address the issues of input-constrained and actuator-fault problems in wind turbine blade vibration control. By employing projection mapping techniques and hyperbolic tangent functions, a novel robust adaptive controller based on online dynamic updates is constructed to constrain vibrations, compensate for unknown disturbance upper bounds, and ensure the robustness of the coupled system. Additionally, considering the possibility of actuator faults during the control process, a fault-tolerant controller is proposed to effectively suppress elastic vibrations in the wind turbine blade system even in the presence of actuator faults. The effectiveness of the proposed controller is validated through numerical simulations.