In this work, we examined the influence of different types of selective laser melting (SLM) devices on the microstructure and the associated material properties of austenitic 316L stainless steel. Specimens were built using powder from the same powder batch on four different SLM machines. For the specimen build-up, optimized parameter sets were used, as provided by the manufacturers for each individual SLM machine. The resulting microstructure was investigated by means of scanning electron microscopy, which revealed that the different samples possess similar microstructures. Differences between the microstructures were found in terms of porosity, which significantly influences the material properties. Additionally, the build-up direction of the specimens was found to have a strong influence on the mechanical properties. Thus, the defect density defines the material’s properties so that the ascertained characteristic values were used to determine a Weibull modulus for the corresponding values in dependence on the build-up direction. Based on these findings, characteristic averages of the mechanical properties were determined for the SLM-manufactured samples, which can subsequently be used as reference parameters for designing industrially manufactured components.