This article focuses on neuropsychological functioning at moderate, high, and extreme altitude. This article summarizes the available literature on respiratory, circulatory, and brain determinants on adaptation to hypoxia that are hypothesized to be responsible for neuropsychological impairment due to altitude. Effects on sleep are also described. At central level, periventricular focal damages (leuko-araiosis) and cortical atrophy have been observed. Frontal lobe and middle temporal lobe alterations are also presumed. A review is provided regarding the effects on psychomotor performance, perception, learning, memory, language, cognitive flexibility, and metamemory. Increase of reaction time and latency of P300 are observed. Reduced thresholds of tact, smell, pain, and taste, together with somesthetic illusions and visual hallucinations have been reported. Impairment in codification and short-term memory are especially noticeable above 6,000 m. Alterations in accuracy and motor speed are identified at lower altitudes. Deficits in verbal fluency, language production, cognitive fluency, and metamemory are also detected. The moderating effects of personality variables over the above-mentioned processes are discussed. Finally, methodological flaws found in the literature are detailed and some applied proposals are suggested.