Air pollution particulate matter and engineered nanomaterials are encompassed in the broad definition of xenobiotic particles. While the effects of perinatal air pollution exposure have been investigated, elucidation of outcomes associated with nanomaterial exposure, the focus of this review, is still in its infancy. As the potential uses of nanomaterials, and therefore exposures, increase exponentially so does the need for thorough evaluation. Up to this point, the majority of research in the field of cardiovascular nanotoxicology has focused on the coronary and vascular reactions to pulmonary exposures in young adult, healthy, male models; however, as intentional and unintentional contacts persist, the non‐pulmonary risks to under‐represented populations become a critical concern. Development of the maternal–fetal circulation during successful mammalian gestation is one of the most unusual complex, dynamic, and acutely demanding physiological systems. Fetal development in a hostile gestational environment can lead to systemic alterations, which may encourage adult disease. Therefore, the purpose of this review is to highlight the few knowns associated with gestational engineered nanomaterial exposure segmented by physiological periods of development or systemic targets: preconception and maternal, gestational, fetal and progeny (Abstract figure). Overall, the limited studies currently available provide compelling evidence of maternal, fetal and offspring dysfunctions after engineered nanomaterial exposure. Understanding the mechanisms associated with these multigenerational effects may allow pregnant women to safely reap the benefits of nanotechnology‐enabled products and assist in the implementation of exposure controls to protect the mother and fetus allowing for development of safety by design for engineered nanomaterials.