a b s t r a c tA two-dimensional (2D) coupled model is developed for the simulation of dendritic growth during alloy solidification in the presence of forced and natural convection. Instead of conventional continuum-based Navier-Stokes (NS) solvers, the present model adopts a kinetic-based lattice Boltzmann method (LBM), which describes flow dynamics by the evolution of distribution functions of moving pseudo-particles, for the numerical computations of flow dynamics as well as thermal and solutal transport. The dendritic growth is modeled using a solutal equilibrium approach previously proposed by Zhu and Stefanescu (ZS), in which the evolution of the solid/liquid interface is driven by the difference between the local equilibrium composition and the local actual liquid composition. The local equilibrium composition is calculated from the local temperature and curvature. The local temperature and actual liquid composition, controlled by both diffusion and convection, are obtained by solving the LB equations using the lattice Bhatnagar-Gross-Krook (LBGK) scheme. Detailed model validation is performed by comparing the simulations with analytical predictions, which demonstrates the quantitative capability of the proposed model. Furthermore, the convective dendritic growth features predicted by the present model are compared with those obtained from the Zhu-Stefanescu and Navier-Stokes (ZS-NS) model, in which the fluid flow is calculated using an NS solver. It is found that the evolution of the solid fraction of dendritic growth calculated by both models coincides well. However, the present model has the significant advantages of numerical stability and computational efficiency for the simulation of dendritic growth with melt convection.