Noncontacting mechanical seals with various kinds of face surface modifications have established their position in the sealing technique. Over the last few years, a lot of works dedicated to the impact of various surface modifications on the dynamics of working rings have been created. This paper presents model studies regarding relatively unknown noncontacting impulse gas face seals. Here, a mathematical model of impulse gas face seals is developed including the nonlinear Reynolds equation and stator dynamics equations, which were solved simultaneously using numerical methods. An original computer software written in C + + language was developed. A number of numerical tests were conducted and the phenomena occurring in the radial gap during seal operation were analyzed. Final conclusions were drawn and several features were indicated characterizing impulse face seals. It should be emphasized that numerical research on this type of seals has not been published yet. The literature usually presents simplified models for the noncompressible medium, which can be solved with the use of analytical methods.