The influences of differently processed wheat products on rumen fermentation, microbial populations, and serum biochemistry profiles in beef cattle were studied. Four ruminally cannulated Limousin × Luxi beef cattle (400 ± 10 kg) were used in the experiment with a 4 × 4 Latin square design. The experimental diets contained (on a DM basis) 60% corn silage as a forage source and 40% concentrate with 4 differently processed wheat products (extruded, pulverized, crushed, and rolled wheat). Concentrations of ruminal NH-N and microbial protein (MCP) in cattle fed crushed and rolled wheat were greater ( < 0.05) than the corresponding values in cattle fed pulverized and extruded wheat. Ruminal concentrations of total VFA and acetate and the ratio of acetate to propionate decreased ( < 0.05) with increased geometric mean particle size (geometric mean diameter) of processed wheat, except for extruded wheat; cattle fed extruded wheat had the lowest concentrations of total VFA and acetate among all treatments. The relative abundance of , , ciliated protozoa, and was lower in cattle fed the pulverized wheat diet than in the other 3 diets ( < 0.05), whereas the relative abundance of was decreased in cattle fed extruded wheat compared with cattle fed crushed and rolled wheat ( < 0.05). No treatment effect was obtained for serum enzyme activity and protein concentration ( > 0.05). Our findings suggest that the method of wheat processing could have a significant effect on ruminal fermentation parameters and microbial populations in beef cattle and that crushed and rolled processing is better in terms of ruminal NH-N and MCP content, acetate-to-propionate ratio, and relative abundance of rumen microorganisms.