The microstructure and electrochemical behavior of Mg–6Al–1Zn, Mg–6Al–1Zn–1Ga, Mg–6Al–1Zn–1Sn, and Mg–6Al–1Zn–0.5Sn–0.5Ga as anode materials in a 3.5 wt% NaCl solution are compared systematically. The results show that Sn alloying refines the second‐phases of Mg–6Zn–1Al by promoting tiny granular Mg17Al12 phases containing Sn, and inspires their disperse distribution. However, the Ga results in the formation of semicontinuous reticular Ga containing Mg17Al12 phases. The comparison of discharge tests indicates that Mg–6Al–1Zn–1Sn has the highest discharge activity, and Mg–6Al–1Zn–1Ga displays the largest hydrogen evolution corrosion resistance in 3.5 wt% NaCl solution at 298 K. The synergy of Ga and Sn can shorten discharge activation time and promote low discharge potential. In addition, the utilization efficiencies of the alloys decrease as follows: Mg–6Al–1Zn–1Ga > Mg–6Al–1Zn–0.5Sn–0.5Ga > Mg–6Al–1Zn–1Sn > Mg–6Zn–1Al. This study illustrates that the Mg–6Al–1Zn–0.5Sn–0.5Ga alloy has acceptable utilization efficiency and desirable electrochemical activity, which implies that doping Ga and Sn obtains a balance between discharge activity and utilization efficiencies.