Soil transverse isotropy results in different stiffness characteristics in horizontal and vertical directions. However, the effect is usually neglected in seismic motion analysis. In this study, an equivalent linear anisotropic soil model was established based on the finite element method, and we investigated the impact of anisotropic parameters on ground motion at the site under various seismic wave inputs. It was found that the anisotropic parameters have a more significant effect on seismic waves, with the dominant frequency being closer to the fundamental frequency of the site. As an example, the soil dynamic parameters in Shanghai Yangshan Port were calibrated by a series of bending elements, resonance columns, and cyclic triaxial tests. The influences of anisotropy on the peak ground acceleration (PGA) and response spectrum were studied for Yangshan Port. Additionally, the standard design response spectra considering the soil anisotropy were provided. A comparison reveals that the existing isotropic design response spectrum may lead to dangerous seismic design for the structures at Yangshan port.