Over the past several decades, dissolved organic carbon (DOC) in inland natural water systems has been a popular research topic to a variety of scientific disciplines. Part of the attention has been due to observed changes in DOC concentrations in many of the water systems of the Northern Hemisphere. Shifts in DOC levels, and changes in its composition, are of concern due to its significance in aquatic ecosystem functioning and its potential and realized negative effects on waters that might be treated for drinking purposes. While it may not be possible to establish sound cause and effect relationships using a limited number of drivers, through long-term DOC monitoring studies and a variety of laboratory/field experiments, several explanations for increasing DOC trends have been proposed, including two key mechanisms: decreased atmospheric acid deposition and the increasing impact of climate change agents. The purpose of this review is three-fold: to outline frequently discussed conceptual mechanisms used to explain DOC increases (especially under a changing climate), to discuss the structure of DOC and the impact of higher levels of DOC on drinking water resources, and to provide renewed/sustained interest in DOC research that can encourage interdisciplinary collaboration. Understanding the cycling of carbon from terrestrial ecosystems into natural waters is necessary in the face of a variable
OPEN ACCESSWater 2014, 6 2863 and changing climate, as climate change-related mechanisms may become increasingly responsible for variations in the inputs of allochthonous DOC concentrations in water.