Resistance to apoptosis is one of the hallmarks of human cancers and contributes to the insensitivity of many cancers to commonly used treatment approaches. Inhibitor of apoptosis (IAP) proteins, a family of anti-apoptotic proteins, have an important role in evasion of apoptosis, as they can both block apoptosis-signaling pathways and promote survival. High expression of IAP proteins is observed in multiple cancers, including hematological malignancies, and has been associated with unfavorable prognosis and poor patients' outcome. Therefore, IAP proteins are currently considered as promising molecular targets for therapy. Indeed, drug-discovery approaches over the last decade aiming at neutralizing IAP proteins have resulted in the generation of small-molecule inhibitors or antisense oligonucleotides that demonstrated in vitro and in vivo antitumor activities in preclinical studies. As some of these strategies have already entered the stage of clinical evaluation, for example, in leukemia, an update on this promising molecular-targeted strategy to interfere with apoptotic pathways is of broad interest.