The paper focuses on the calculation of the effective elastic properties of a laminated composite shell with imperfect contact between the layers. To achieve this goal, first the two-scale asymptotic homogenization method (AHM) is applied to derive the solutions for the local problems and to obtain the effective elastic properties of a two-layer spherical shell with imperfect contact between the layers. The results are compared with the numerical solution obtained by finite elements method (FEM). The limit case of a laminate shell composite with perfect contact at the interface is recovered. Second, the elastic properties of a spherical heterogeneous structure with isotropic periodic microstructure and imperfect contact is analyzed with the spherical assemblage model (SAM). The homogenized equilibrium equation for a spherical composite is solved using AHM and the results are compared with the exact analytical solution obtained with SAM.