Background and Objectives: The aim of this study was to evaluate the influence of abutment angulation, types, and bone quality on fatigue performance in dental implant systems. Materials and Methods: Three-dimensional models of maxillary 3-unit fixed implant-supported prostheses were analyzed. Abutments with different angles and types were used. Healthy bone (Hb) and resorbed bone (Rb) were used. Conducted on implants, a force of 150 N was applied obliquely, directed from the palatal to the buccal aspect, at a specific angle of 30 degrees. The stress distribution and fatigue performance were then evaluated considering the types of bone used and the angles of the three different abutments. The simulation aspect of the research was carried out utilizing Abaqus 2020 software. Results: In all models, fatigue strengths in healthy bone were higher than in resorbed bone. Maximum stress levels were seen in models with angled implants. In almost all models with resorbed bone, fatigue performances were slightly lower. Conclusions: Increasing the abutment angle has been shown to increase stress levels and decrease fatigue performance in the adjacent bone and along the implant–abutment interface. In general, implants applied to healthy bone were found to have a higher success rate. It has also been suggested that multiunit abutments have beneficial effects on stress distribution and fatigue performance compared to resin cemented abutments. The type or angle of abutment and the quality of the bone can lead to biomechanical changes that affect the force distribution within the bone structure surrounding the implant. Clinicians can influence the biomechanical environment of the implant site by varying the abutment angle and type to suit the condition of bone health, potentially affecting the long-term success of implant treatment.