This paper presents ultrastructural features of the contact region between particular tooth germs and Meckel's cartilage prior to, during, and after initial resorption of the perichondral bone and of the cartilage in the cichlids Hemichromis bimaculatus and Astatotilapia burtoni. Imminent resorption opposite such teeth is announced by the presence, in this region, of a particular cell type, considered to be a stage in the cytodifferentiation of osteoclasts. Slightly later, an osteoclast with typical ruffled border is seen to open a fenestra in the perichondral bone which surrounds Meckel's cartilage. Although the action of the osteoclast is directed primarily towards the bone, it may also affect, to a much lesser extent, the underlying uncalcified cartilage. Typically, fibroblast-like cells invade the resorption cavity along with the osteoclast; the tooth germ soon follows. Capillaries are seen to invade the cartilage only at a later stage when a large cavity has been established. It is proposed that the fibroblast-like cells may have a dual function: degradation of cartilage and deposition of new bone. Although these processes are normally limited to the area surrounding tooth germs at specific loci, tooth germs in other positions may sometimes be seen invade the cartilage. They do so either passively, because of the existence of such a cavity, or as a result of their own resorption-inducing activity. Whatever the mechanism, attachment bone is being deposited within the erosion cavity and on the surface of the exposed perichondral bone. The stimuli possibly eliciting resorption of Meckel's cartilage are discussed. It is hypothesized that pressure exerted by the growing tooth germ may stimulate the osteoblasts covering the bone surface and, in this way, provoke osteoclastic bone resorption.