This work investigates loss model sets based on empirical loss correlations for subsonic centrifugal compressors. These loss models in combination with off-design performance prediction algorithms make up an essential tool in predicting off-design behaviour of turbomachines. This is important since turbomachines rarely work under design conditions. This study employs an off-design performance prediction algorithm based on an iterative process from Galvas. Modelling of ten different loss mechanisms and physical phenomena is involved in this approach and is thoroughly described in this work. Geometries of two subsonic compressors were reconstructed and used in the evaluation of individual loss correlations in order to obtain a suitable loss model. Results of these variations are compared to experimental data. In addition, 4608 loss model sets were created by taking all possible combinations of individual loss estimations from which three promising candidates were selected for further investigation. Finally, off-design performance of both centrifugal compressors was computed. These results were compared to experimental data and to other loss model sets from literature. The newly composed loss model set No. 2137 approximates experimental data over a 21.2% better in relative error than the recent Zhang set and nearly a 36.7% better than the outdated Oh’s set. Therefore, set No. 2137 may contribute to higher precision of centrifugal turbomachines’ off-design predictions in the upcoming research.