Influence of Learning Rate Hyper-Parameter and Early Stopping Training Technique in Training Vanilla Neural Network Model for Effective Signal Power Loss Prediction
Virginia Chika Ebhota,
Thokozani Shongwe
Abstract:In this research work, the authors employed a Vanilla Neural Network (VNN) model to examine the influence of the Learning Rate (LR) hyper-parameter, early stopping training technique, Levenberg-Marquardt (LM) and Bayesian Regularization (BR) training algorithms in the training and prediction of signal power loss using a measured dataset from a Long Term Evolution (LTE) micro-cell environment. First order statistical performance indices, including the Mean Squared Error (MSE), Root Mean Square Error (RMSE), and… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.