Biomaterials are obtained from renewable sources, low cost, abundant supply, environmentally friendly, fossil free and biodegradable. Therefore, the main objective of the present research is to use different biomaterials, such as carbohydrates (starches, celluloses), proteins and lignin in tire compounds without compromising tire properties and gaining possible advantages in terms of properties, cost, weight and environment. We have incorporated (10 phr, top up) different type of starches, such as maize, wheat, rice, cassava, and cellulosic materials, such as microcrystalline cellulose, sodium carboxymethyl cellulose, natural proteins, such as soya bean flour, and lignin in a silica filled tire tread compound and measured the properties to investigate if any of those materials can be used in tire. Among all these biomaterials, cassava, lignin and soya accelerate rate of vulcanization. Therefore, these materials can be used as bio-accelerator. Soya proteins imparts approximately 11% improvement in tensile strength and approximately 10% improvement in elongation at break. After the addition of biomaterials there is increase in marginal rolling resistance, increase in Payne effect and significant deterioration in wear property. Soya protein accelerate rate of vulcanization, improves mechanical properties, shows minimum deterioration in properties after ageing. Therefore, soya protein is the most suitable biomaterials among the materials studied for application in tire compound.