Nowadays, high performance concrete is used more frequently because of the many advantages compared to traditional concrete. The higher mechanical properties (e.g., compressive strength, flexural strength, and Young's modulus) allow for larger spans and slender cross-sections. Despite the use of advanced material, standards for structural design do not fully use materials' potential. This can be minimized by using fracture mechanical properties in structural analysis. The fracture mechanical properties help to perform advanced structural analysis, especially when some of the structural elements have a crack. The load presence on the structure can be divided into tensile-mode I, shear-mode II, and combination of tension and shear-mixed mode I/II load. Therefore, it is necessary to perform test, which covers mixed mode loading conditions. One of the tests usually used for the evaluation of fracture resistance of concrete is Brazilian disc test. This contribution compares fracture resistance of two types of structural concrete (normal and high strength) under the mixed mode I/II. The generalized maximum tangential stress (GMTS) criterion was used for the evaluation of the fracture resistance.