WHAT THIS PAPER ADDS Fusion of multiperspective 3D ultrasound (US) imaging of abdominal aortic aneurysms (AAAs) with a large longitudinal length was developed for automatic assessment of AAA geometry and patient specific wall stress analysis using biomechanical modelling. This study showed that US based geometry and wall stress results were in good agreement with CT, enabling harmless and cost efficient longitudinal studies on wall stress and AAA growth for aneurysms of all lengths and sizes. Background: Current clinical guidelines for surgical repair of abdominal aortic aneurysms (AAAs) are primarily based on maximum diameter assessment. From a biomechanical point of view, not only the diameter but also peak wall stresses will play an important role in rupture risk assessment. These methods require patient specific geometry which typically uses computed tomography (CT) or magnetic resonance imaging. Recently, wall stress analysis based on 3D ultrasound (US) has been proposed, and shows promising results. However, the major limitations in these studies were the use of manual segmentation and the limiting field of view of US. Therefore in this study, the AAA is imaged with multiperspective 3D ultrasound, merged to obtain a large field of view, and afterwards automatically segmented. Geometry and wall stress results were validated using CT imaging. Methods: Three dimensional US and CT data were available for 40 AAA patients (maximum diameter 34e61 mm). The full US based AAA geometry was determined using automatic segmentation, and when the aneurysm exceeded a single 3D volume, automatic fusion of multiple 3D US volumes was used. Wall stress analysis was performed for all AAA patients and percentile wall stresses were derived. The accuracy of the US based geometry and wall stress prediction was measured by comparison with CT data. Results: Estimated geometries derived from 3D US and CT data showed good similarity, with an overall median similarity index (SI) of 0.89 and interquartile range of 0.87e0.92, whereas the median Hausdorff distances (HD), a measure for the maximum local mismatch, was 4.6 (4.0e5.9) mm for all AAA geometries. Thereby, the wall stress results based on merged multiperspective 3D US data revealed a greater similarity to CT than single 3D US data. Conclusion: This study showed that large volume geometry assessment of AAAs using multiperspective 3D ultrasound, segmentation and fusion, and wall stress analysis is feasible in a robust and labour efficient manner.